This function computes expected measurements (corresponding to the fitted curves) for the specified times and features in all combinations of conditions and covariates (if they exist).
Usage
getExpectedMeas(
fit,
times,
fitType = c("posterior_mean", "posterior_samples", "raw"),
features = NULL,
dopar = TRUE
)
Arguments
- fit
A 'limorhyde2' object.
- times
Numeric vector of times, in units of
fit$metadata[[fit$timeColname]]
.- fitType
String indicating which fitted models to use to compute the expected measurements. A typical analysis using
limorhyde2
will be based on 'posterior_mean', the default.- features
Vector of names, row numbers, or logical values for subsetting the features.
NULL
indicates all features.- dopar
Logical indicating whether to run calculations in parallel if a parallel backend is already set up, e.g., using
doParallel::registerDoParallel()
. Recommended to minimize runtime.
Examples
library('data.table')
y = GSE34018$y
metadata = GSE34018$metadata
fit = getModelFit(y, metadata)
fit = getPosteriorFit(fit)
measObs = mergeMeasMeta(y, metadata, features = c('13170', '12686'))
measFitMean = getExpectedMeas(
fit, times = seq(0, 24, 0.5), features = c('13170', '12686'))