Introduction
Here we show two options for using limorhyde2
to analyze
RNA-seq data: limma-voom
and DESeq2.
The two approaches give very similar results.
This vignette assumes you are starting with the output of tximport.
Load the data
You will need two objects:
-
txi
, a list fromtximport
-
metadata
, adata.frame
having one row per sample
The rows in metadata
must correspond to the columns of
the elements of txi
.
library('limorhyde2')
# txi = ?
# metadata = ?
Fill in counts for sample-gene pairs having zero counts
This avoids unrealistically low log2 CPM values and thus artificially inflated effect size estimates.
Option 1: limma-voom
y = edgeR::DGEList(txiKeep$counts)
y = edgeR::calcNormFactors(y)
fit = getModelFit(y, metadata, ..., method = 'voom') # replace '...' as appropriate for your data
Option 2: DESeq2
The second and third arguments to
DESeqDataSetFromTxImport()
are required, but will not be
used by limorhyde2
.
y = DESeq2::DESeqDataSetFromTximport(txiKeep, metadata, ~1)
fit = getModelFit(y, metadata, ..., method = 'deseq2') # replace '...' as appropriate for your data
Continue using limorhyde2
Regardless of which option you choose, the next steps are the same:
getPosteriorFit()
, getRhythmStats()
, etc.