Introduction
Here we show two options for using limorhyde2 to analyze
RNA-seq data: limma-voom
and DESeq2.
The two approaches give very similar results.
This vignette assumes you are starting with the output of tximport.
Load the data
You will need two objects:
-
txi, a list fromtximport -
metadata, adata.framehaving one row per sample
The rows in metadata must correspond to the columns of
the elements of txi.
library('limorhyde2')
# txi = ?
# metadata = ?Fill in counts for sample-gene pairs having zero counts
This avoids unrealistically low log2 CPM values and thus artificially inflated effect size estimates.
Option 1: limma-voom
y = edgeR::DGEList(txiKeep$counts)
y = edgeR::calcNormFactors(y)
fit = getModelFit(y, metadata, ..., method = 'voom') # replace '...' as appropriate for your dataOption 2: DESeq2
The second and third arguments to
DESeqDataSetFromTxImport() are required, but will not be
used by limorhyde2.
y = DESeq2::DESeqDataSetFromTximport(txiKeep, metadata, ~1)
fit = getModelFit(y, metadata, ..., method = 'deseq2') # replace '...' as appropriate for your dataContinue using limorhyde2
Regardless of which option you choose, the next steps are the same:
getPosteriorFit(), getRhythmStats(), etc.